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This paper presents a model to calculate tile tcInperature  de-

pmclcncc  of effective permit tivit ies for a 1 Ietero?;eneous  anisotropic

medium containing multiphase scatterers. With the strong pcrmit-

tivity fluctuation approach, the mc)del is developed to account for

the clcctrodynamic  scattering effect together with the cluasi-static

characteristics of multiple spccics and sulxpecics  of inhomogencities

with distributed orientations, sizes, and sl)apcs. DUC to a preferen-

tial direction in the orientation distribution, the medium is effectively
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anisotropic. The size distribution is described with a probability den-

sity function in terms of normalized volumetric sizes. Scatterer shapes

arc ncmunifcmn and have a genera] ellipsoidal form cllaracterizcxl  by

arbitrary axial ratios  of correlation lengths which arc related to physi-

cal geometries of the scatterers. In tl]is formulation, sca ice consisting

c)f solid ice, liquicl brine, and gaseous inclusions is moclelcd  to derive

a.nisotropic  cffcctivc  pcmnittivitics with thcrmodyrlamic  phase  redis-

tribution and structural l]letal~lor])llis]l],,  Theoretical results arc in

goocl agrmxncnt with experimental data at 4.8 GHz for saline ice un-

dergoing warming and cooling cycles. A competitive  effect between

the increase of liquid brine and the rouxidi]lg of ellipsoidal scatterers

at increasing temperatures explains the trend observed in measured

data. Sensitivities of cffcctivc  permittivities to structural ancl physical

parameters characterizing sea ice arc also studied.

1. INTRODUCTION

Most natural media arc heterogeneous mixtures of materials with different phases,

orientations, sizes, ancl shapes. Physical and strucl ural characteristics of medium con-

st it uents are usual] y interdependent and influenced by enviro]  m]cnt al conditions such as

aml]icnt  temperature, solar radiation, moisture and precipitation. The composite media

can bc characterized by effective perrnittivities, w] Lich  dctermi]  lC elect romagnet  ic wave

propagation, at tcnuation , scattering, and emission. These proccsscs  are essential to the
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interpretation of remote sensing data of geophysical media. EH1’ectivc  pcrmittivities  thcnl-

selvcs, however, also often demonstrates complex environmental dc} )cndencies  such as ther-

mal variations. This papa- presents a permittivity  lnodel to cx~)lain  these effects and

illustrate the rmults  with an ap~)lication  to sea ice.

Pcrmittivitim  of Inixtures  }lavc long

electric mixing formulas have becnl derived

been a sul )jcct of Cxtellsivc  stucly.  Many di-

for multipl)ase  il~l)olllc)gc)lcitics  with spherical,

spllcroidal, and cllipsoiclal  shapes. Together with a sunlmary of tllcsc fcmnulas,  Tinga ct al.

[1975’] reported a formula for confocal ellipsoidal shell inclusions and compared calculated

results with measured data for wet wood. In modeling of heterogeneous earth, Wait [1983]

illclicated  that the particle shape is important to the efFectivc  electrical properties. A more

ccmlpletc  account of electrical properties of the earth  has been documented [ Wait, 1989],

including a model of coated particles for dissmninate(l  sulphidc mineralization. With ap-

plications to snow and sea ice, Sihvola  and Kong [1988] obtained a general mixing formula

unclcr the quasi-static condition for multiphase mixtures of scattering cllipsoicls.

In addition to the quasi-static term, a scattmilkg  term appears in the effective pcr-

mittivity expression derived from the strong pcrmitt  ivity fluctuation theory [ Tsang and

Kong, ~ 981a]. In this approach, the quasi-static absorption loss and the dispersive scat-

tering  loss are both considered. The theory was applied to vegetation [ Tsang and Kong,

1981 b], snow [Tsang et al., 1982], and sea ice [StogTyn,  198fl. This approach has been

extended to model a random medium containing uniform ellipsoids with orientation distri-

butions [IVghiem  et al., 199$] and an isotropic heterogeneous medium containing multiple

spccics of uniform-size scatterers [IVghiem et al., 1993b].

In this paper, a model is developed to account for the complexity of multiphase
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mixtures with multiple species and subspecies of scat tcrcrs  characterized by orientation,

size, and shapes  distributions. With the strong fluctuation a~)~)roa.ch,  derived cffcctivc

pcmllittivities  will include scattering effects. ‘1’he orientation distribution has a prefmwntial

alignment direction rcnclming  the mcclium  cffrctively anisotropic,. The size distribution is

described in terms of nLmlbcI density or fractional )Tolumc  as a function of IIornlalizcd

volumetric size. ‘1’hc shape clistribution  afkcts  electromagnetic properties of the mixture

in a nonlinear manner. To depict various slla.pcx of scatterers in a species, scatterers with

a similar shape  arc classified into a group treated as ;t subspecies.

The theory is used to obtain anisotropic effective permittivitics  of multiphasc con-

gelation sea ice with a columnar structure, In this formulation, physical and structural

characteristics of the medium can be modeled more lcalistically. Moreover, the model al-

lows  l)hysical  and morphological  variations in lnediulll  properties that are interrelated ancl

subordinated to physical processes such as col~stituellt  phase redistribution and structural

nlctamor~)hism  under thermal effects. Calculated results arc compared with experimental

data at 4.8 GHz for multiphasc saline ice undcrgoin$;  warming allcl cooling cycles.

2. MODEL FOR EFFECTIVE PERMITTIVITIES

In this section, the strong pcrmittivity  fluctuation approach is used to formulate and

derive effective permit t ivitics  of an anisotropic medium cent ainin g scatterers with different

phases, pcrmittivitics,  and distributed structural properties. The cffcctivc  pcrmittivities

arc obt ainccl by combining the method for an inhcnnogeneous  ani sc)t ropic medium [Xghiem

et al., 1999] with the method for a multi-species mixture [Nghic?n  et al., 1995b].
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2.1. Formulation for a Distributed Heterogeneous Medium

ThcI cffm.tivc pcrmittivity  tensor of the rnccliulm consists of a quasi-static part and a

scattering lmrt corresponding to the first and second terms, reslx’ctively,  in the following

expression [ Tsang and Kong, 1981a]

(1)

—
where ~ is tllc unit dyad,  ]n (l), =~ is the auxiliary permit, tivity tensor, ~ is the dyadic

coefficient of the Dirac delta part in the dyadic Green’s function of an anisotropic mcxlium,
—

and FCJJ is the, cffectivc dyadic scatterer. Before deriving tllcse quantities, wc need to

dcscribc  the medium and define characterizing paraxncters.

Figure 1 illustrates the modeling of a multiphasc medium with multiple spccics and

subspecies of scatterers such as sea, ice. First, define a species as a set of scatterers with tile

same pcmnittivity.  In (1), =~ and ~ arc solved iteratively from a set of nonlinear coupled

equations; these quantities depend on ratios of correlation lengths, i.e., scatterer shapes

[Nghiern  ct Q/., 1995 b]. Thus, it is necessary to classify scatterms  in each species into

groups considered as subspecies; each contains scatterers of similar shape. 111 this context,

a subspecies is a set of scatterers with the same perlnittivity  and the same shape. The

shapes  have a general ellipsoidal form with arbitrary axial ratios including spheroids and

spheres as special cases. While =9 depends only on correlation length ratios, the scattering

part in (1) dots depend on the scatterer size. Size validations of scatterers in a species are

accounted for with an integration over the scatterer size distribution in the calculation of

the scattering part.

Let ~b bc the pcrmittivity  of a background medium hosting a total number of IV
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scattering Sut)spccies,  Pcrmittivity  61~ is for subspecies i occupying a fractional volume ~i~

in the mixture, The total fractional volume of all scatterers is >Jfl,l ~i~

is the fractional volmnc of the backgrouxlcl.  Note that a single subscril)t

subspecies in all spw.ies  (this simplifies the arrangement of subspecies

= 1-- fb where ~~

i is used to denote

and spccics into a

sillglc  array) and that ~i~ has the same value for scatterers in

The cffcctivc  dyaclic scattcrcr, ~ejf, of the hcierc)geneous

the sanle  species.

axlisotropic  medium is given

by tllc follc)wing expression [ T.~a?bg and Kong, 1991a; Nghiem  et al., 1993, 1995b]

which is valid under the condition I [?ej~  (~)] j,lz I << 1. Normalized volumetric size v is

defined as the volume of a scatterer in a spccics under consideration divide by the volume

c)f the smallest scatterer of the same pcrmittivity  rega?’dzess  of shape. By this definition,

the minimum value of v is 1. The intcgratiol] over dv accounts for the size distribution

in the size range Vi (,species) of scatterers in a species. The probability clcnsity function

of cx-icntation  ~]i (a, /?, y) is described in terms of Eulerian  orientation angles ~, ~, and

~, which relate  the local coordinates (z’, y’, z’) to

Figure 2. The tensor ~~ is the anisotropic  dyadic

For the ellipsoidal form of scatterers used in this paper, the Fourier transform @if of the

the global system (x, y, z) as shown in

Green’s function [Nghiem et al., 1990].

ncnnalizccl  local correlation function is

(3)

in the local coordinates of the scatterer. The local correlation lengths  ~izj j ~iy~ ~ and ~izt

(0)clcpcncl  on the scatterer size and shape. The local variance 17itj~l,n  of scatterer fluctuations
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volumetric size t)

2.2. Exprw!3i07L3

and ~~~ (v) carries informaticnl  regarding the size distributioll.

for Eflectivc  Pemnittivitics

The condition of sccu]ar elimination (~(~))  == () is impcmd  to clcrive  the auxiliary

uniaxial  pcrmittivity  tensor Eg == diag(~g~,  69P1 ~gz ). For  scatterers preferentially aligned

in

is

the vertical clircction  and randc)m  in azimuth, the orientation of ellipsoidal scattcrms

cha.ractcrizcxl  with relative azimuthal angle Q between the local ancl global coordinates.
—

Thus (~(~))  is simply

(5)

-...
where the ucm-zero elements of ‘T- arc T] 1 = TZZ == cos 0, Tlq == –Ii] = sin d, and 2’33 = 1.

Carrying out the integration ova azimuthal mlgle Q yields

ffis ( ( i x +  fi~,) = O

,
(tla)

i=l

N)’

the summation is

fractional volume

2=1

over all constituents in the medium including the background

notation f’s z f’ is used here for convcnknce.  In (6), ~’s are

related to S’s and arc expressed in the local cocmdillates  as

(7a)
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(7b)

(7C)

lcre i is 1 ,2,..., AT for the scattcrcr subspecies or i is rcplaccd by b for the background.

Jn (7), 6 talm on the valuc of ti, in a

medium.

Tllc dyadic cocffic.icmt  ~i for the

scattcrcr of subspecies i or ~~ ill the background

cllipsoiclal  scat t crcr is dcri vccl from t hc vanishing

collditicm  of the frequency inckpcndcnt  terms ill the cffcctivc  scattcrcr tensor [ Tsang and

Kong, 1981 a]. By cancdlhg  the frequency ill~cpcn[lcnt  tcrn~s [ill (14)-(16) bcl~wl ~ thc

results for sulqmcics  i arc

I

2X
s~z, = Zn,,,a,i}  [(1+- a,) tan-l fi~ -- ~~]da @T Cos (8a)

o i

1

2T
Siv, = da co~:v  ‘i n 2  a_ [(1 +  ~i)tan-l

2~~~PCll@ii
+i; - /Z;] (8b)

o

I
c&, = 2“da :0(1  +  ai~ [@– t a i l - l  @~]

2~6~~il~/Hi
(8C)

o

where the integrations over a arc carried cmt l~unlcrically.  ‘rhc  q~lantltles  ai, ?iz,
. . ancl Yjy

arc

(9a)

(91J)

(9C)

(9ci)
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With tllc almvc results for ~i, the average clyadic coefficient (~) ill (1) is determined by

rSid  o 0 1

Lo o ~si,?,

——

J

Spoo

O s . O

o 0 s,

(lo)

f~s ~~ u ~fl= ~ fi~i  /(1 – fb ). Then c~ ‘S and S’S are solved itmativcly  from the above

equations.

To complete the derivation of the effective permit  tivity tensor, the effective scatterer

txmsor  nceck+ to lx obtained. Due to the azimuthal symmetry, the effective scatterer tensor

—
~eff  takes  on the ulliaxial  forln

l-o 0 ‘Qf2
which is ddincd by (2) from which the following results

(11)

(12a)

(12b)

The variance 6ic’s in (12) are related to fractional volumes ancl local scatterers by

6i(j/ = fisfb  (~ij’ –  (bj’) (fij’  –  ‘fbj’) (13)

The quantities liZ/, .liv~,  and l~zl in (12) are derived by substituting elements of the

anisotropic clyadic Green’s function [iVghiern  et al., 1990] and the Fourier transform (3)
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of the normalized correlation function in (2). The complex variable integrations involve

only elementary functions. The results that follow contain square rc)ot and inverse tangent

functions of complex argmnents.  For the square root (@) of a colnplcx  nulnbcr w, them

arc two Ricnmlln shcet,s  and the value  on the princil)al  Riemmm  sheet,  is chosen with the

branch cut ou tile negative real axis of the complex plane SUCII that, –~ < arg w < m for

th(: Wgllllld Of I(J. The inverse tangent function of a complex Ilulnber w is dctcrminccl by

tan-l w = l/(2i)h1[(l + izo)/(1  - iw)] which has all ilifinitc  nmllbcr of R.icmanll  sheets ancl

the val~;c of the: natural logarithm is taken on the pr-i]lcipal Ricmann sheet with the branch

cut also aloxlg  the negative real

shows a schclnatic visualization

axis such that, – n < ar-g[(l +- izo)/(1  – iw)] s n. Figure 3

c)f these Ricmann sheets. The sllccts  should collapse onto

the cmnplcx plane  and their linlits  extend to the entire complex plane including zero for

the square root ancl excluding zero for the logarithm. With these single-value complex

functions, tllc results for 1’s of subspecies i arc:

( a )  Fc)r z’ clcmcnt

(b) For  z’ clcmcnt

(14a)

(14b)

(14d)

(14e)

(15a)
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(15b)

(c) Fory’clcmcnt

(16)

Substituting =9, (5), and ~,ff in (1) finally  yields  tile Uniaxial  effective pcrmittivity

t~ns~r :cjj == diag(c,fj  ~, ~,jj P, C.jj, ) whose lateral  and vertical  elements  are, respectively

Depending on mcdiurn  structures and characteristics, size and shape distributions

can bc measured with digitized section images [ Vallese and Kong, 1981; Perovich and

Richter-Menge, 1994]. Local correlation lengths corresponding to a scatterer can also be

cstilnatecl  by setting the correlation volume to bc equal to the volu]nc of the scatterer with

the same axial ratios [ Yueh et aL, 1990]. For an elli~)soid  with semi-axes a, b, and c, the

relations with correlation lengths are

(18)
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The expressions in (17) indicate that the effective permittivity  tensor ~,jf is aniso-

tropic with an optic axis in the vertical direction due to the preference in the orientation

distribution, The above derivation has been carried out for cllilxwidal scatterers with

arbitrary axial ratios, which can be reduced to the case of spheroidal or spherical scatterers.

3. AI’PLICATION  TO S1;A ICI?

The results dcrivcxl  in the previous sections are lJOW specifically appliecl  to model sea

ice including thcrmodynmnic  phase distribution and structural met .wnorphism.  Sca icc is a

multiphase mixture as illustrated in Figure 1. The background is ice grown in the columnar

form as observed in congelation ice. In many cases, crystallographic c-axes in sea ice arc

parallel to the horizontal plzLnc.  When there is no directional stress, such as caused  by a sea

current, cxcrtcxl during the growth process, the c-axes are randomly oriented in azimuthal

directions. Ice ~)latclets  in sea ice sandwich saline water fronl the sca in ellipsoidal pockets

called  brine inclusions. In addition, there are air bllbbles embeddccl  in the ice. When

the tcnnpcraturc  changes, the solid, liquid, and gaseous phases redistribute, ice structure

metamorphoses, and characteristics of constituents in sea ice such as permittivity  also vary.

Further details of sea icc characteristics can be found in several references [e.g., Weeks  and

Acklcy, 1982; Nghiem  et al. 1995a].

9.1. Size Di~tribution

Due to the high permittivity  of the saline water at microwave frequencies, brine

inclusions have a strong effect  on the electromagnetic propcrtim  of sea ice. The size
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distribution of the inclusions has been rcportwl  to follow the power law [Perovich and

Gow,  1991]. Consider a power-law c{istrikmtion  for number density ?2 of scatterers with

sim v dcxribcxl  by

n = ?10 V-2P (19)

wllerc  p is tllc power-law inclex and no is the Ilunlbe] clcnsitly  c)f I)ril]e  inclusiol]s  of the

smallest size.  ‘1’he normalized volumetric size has txcn clcfincd ill subsection 2.1 as the

ratio of volume vs of an inclusion over volume Vso of tile smallest, OIIC. By definition,

in which fs (let’s temporarily drop subscript z for the subspmics)  is the fractional volume

of inclusicms with volume V$. From (20), the size clistl  ibution can alsc) be represented by

the fractional volume as

f.(v) = n@,l)vl-2p  == f,oul+ (21)

for the fractional volume j~o of inclusions having the slnal]est size. The size clistribution  is

spccificd when j~o and p are determined. This can be done if the total fractional volume

and t hc minimum, average, and maximum sizes of t hc inclusions are measured.

First, a solution for power-law index p is considered, Average normalized volumetric

size v~ is obtained by measuring the size of every  inclusion and then taking the average.

Mathematically, this process is described by

1

!

f ,M

“ a  =  fsM –  fs~ j,.
Cif.v(f,) = –- --L /f,Mdf, (;;)1’(1-2”  (2’2,

fsM  –  f~o j,.

The integration ranges from the fractional volume f.. of the smallest inclusions to f,M of

the largest. Another methocl  of measuring the average normalized volumetric size is to take
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the ratio of total  fractional volume j,~ to the total ]lunlber  clcmsity  ?22’ of the inclusions

and normali7Jc it to the smallest volume VS o; i .c.,

Va = -f~--
?llv~o

(23a)

The total number density ?lT is calculated by an intcgyatioxl  oveI the size distribution

1 UM /VM
?iT == dvn(v) =- dvn o v - 2p (23b)

1 1

in which VM = vSJI /vSO is the normalized vc)lumctric  size of the largest inclusions. Both

(22) and (23) give the same result for average volumetric size v.

2 ( 1 – p )  _  ~
1 - -  2 p  v~—————. forp+~

‘ a  =  ~“”–p) vfi-@) – 1 ‘

This is rearranged to solve iteratively for the powm-lfiw index p from

p = ‘--’”(’’=9+ *~ ‘Vi’h ‘“ii%2 h ‘I)&f

The following conditions arc used to check the convel  gence of tlw solution

2(1–p) _ ~
-.—

‘)” “J ;g-2p) _ ~

‘M=(&%5’’(]-2p)
Note that the right hand side of (24) has to be positive

(24)

(25)

(26a)

(26b)

since va is positive. Furthermore,

VM >  1 results in

2(1–p) _ ~
V&f l – 2 p  >0— > 0
;$-2P)_ ~

=+ ——
2(1 –p)

(27)

which imposes the condition p ~ (0.5, 1). Thus, the power-law inclex  p is determined if va

and VJj are known. For given v. and VM, if the solution for p is not possible, a different

description of the size distribution should be considered.
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Now, fractional volume j,. of the smallest inclusions needs to be derived to complete

the determination of the size distribution. Total fractional volume ~,~ of the inclusions is

calculated by integrating the fractional volurnc  distril}ution over t llc entire size range

(28)

When the total fractional volume is known from mcas{lred data, f,[) is solved by using (28)

and the solution for the power-law index p.

The size distribution changes with temperature. When the tenlpc@ure  varies, vol-

umes of individual brine inclusions do also. Assume that the volumes of the inclusions

change at the same rate; i.e., for two different temperatures To a~)d T,

Z),(TO) v,(T)—— _—
V, O(TO) = V$O(T)

(29)

Also assume that no new inclusion is created nor existing ones removed at different tem-

peratures;  i.e., the density rmmbcr  of the inclusions is conserved. ‘1’his condition requires

.fs(To)  fs(T) alld .fsd7’o)  = jso(T)—— =— —— _ --——— —.
V$(TO) v, (T) v,()(7~) V,O(T)

(30)

Let the size distribution at temperature To conform to a power law with index p(To ) so

that

.f~(To)  =  f,c)(7i))  vl-2P(~o) (31)

Substituting (31) in (30) renders

From (29), (30), and (32), it is shown that

.f$(T) = fso(T)  ~l-ZP(TO)

(32)

(33)
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Equation (33) indicates that the power-law index does not change as the temperature varies

when the above assumptions arc reasonable. Under tile above conditions, volumetric sizes

are also preserved at different temperatures so that v.(T) = v. (!lh ) and VM (T) = VM (T.).

If ice structural data are not available at all temperatures unc]cr consideration, the index

obtaineci  at a temperature may be used at a different, temperature when there is no severe

brine loss nor ice cicformation.  otherwise, thill section images arc llccessary to determine

the sifie clistribution.  For air bubbles, the size distribution is obtained in the same manner.

9.2. Shape Distribution .

Shapes of brine inclusions have been observed as substantially ellipsoidal [e.g., Gow et

al,, 1987j. From thin sections of saline ice grown at tile U.S. Army Cold Regions Research

and Engineering Laboratory [ Gow et cd,, 198’/l, it is seen that only inclusions of small

sizes have a more rounded spheroidal form. Followin~;  these observations, a S1OW1 y varying

logarithmic function is used to describe the shape distribution such that

in v
co(v) = (eaM — ea~)–—  — + eanl

in V,W
(34a)

in v
eb(V) = (eb~  —  eb~)–—  – +  cb~

111 vhf
(34b)

where the axial ratios ea = a/c and cb = b/c. Subscript kf and nt are for maximum

and minimum values, respectively. This shape distribution implies that inclusions are

substantially ellipsoidal for large and medium size and more rounded for small sizes.

When the temperature increases during a warming cycle, the shapes of the inclusions

become less ellipsoidal or more rounded as seen in thin sections of saline ice prepared by

Gow et al. [198~. This thermal effect on the sea ice structure is ]nodeled with a reshaping
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factor operating on axial ratios e.M and e~Jf, Suppose that axia] ratio e~&f(TOj at the low

tcmpcraturc  To becomes e~~f (T~ ) at the highest temperature T~ of the thermal cycle. The

axial ratio at temperature 2’ between To ancl T~ then assumes the form

where P is the reshaping inclex and all tcxnpcraturm  are in dcgrccs Celsius below the

freezing point. When the thermal cycle has a large temperature range, (35a) can bc

approxilnated as

f2bJrf(~) = [CbM(~o)  -- Q&j(~~)] {1 – C!X~[)’(~ – Th)]} ‘1 Cb&f(~~) (35b)

such that the value of eb&f (T) is well preserved near temperature To, Similar  formulas

apply tO t3a  M, This thermal process describes a structural metamorphism which makes

ellipsoidal shapes of the inclusions transform i]lto a more romldcd  form with an increasing

temperature. For air bubbles, observed shapes are rather rounded in the form of spheroids

or spheres [.Pe~ovich  and Gow, 1991; Gow et al. 1987’j.  Therefore, shapes of air bubbles

do not change as much as those of brine inclusions and are assumed to be unaffected by

thermal variations.

9,9, Correlation Lengths

When scatterer axial lengths are specified, the corresponding correlation lengths in

the local coordinates can be calculated from (18).

vary as a function of temperature since sizes and

Furthermore, correlation lengths also

shapes of the inclusions change with

temperature. If geometrical measurements of the scatterers are made at temperature To,
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correlation lengths at a different temperature, 2’, may be estimated under the assumptions

in subsection 3.1. From (30), the normalized volumetric size at tcxnperature  T can be

written as

fs(q— - –  V$(20)
“(T) = j,(T’,)

(36)

The size distributions at dificrent  temperatures in (31) and (33) and total fractional volume

.fs~ given by (28) lead to the relation

$,(T) _  jkl(q -_ @’(T)—. .—
.fs(To)  -  .fso(To)  ‘“ .f,T(To)

(37)

Relation (36) ancl the ratios in (37) together with the definition of normalized volumetric

size (20) give

vf,()(T)
V3(T’)  = —-—f,o(To) ~so(~o) (38)

Volume v,(T) and V$O(TO  ) of an ellipsoidal inclusion are calculated from the sizes as

where m clenotes  the minimum. Substituting (39) in (38) ancl using (18) render the local

correlation lengths corresponding to the inclusion

&I(T) =
[ 1

vf$o(~)  eam(To)ebm(To)  ~—-———  — cn2(7~) (40rl)
6f,cI(2_o) ea(?’)eb(?’)

ly)(7’) = eb(T)&l(T) , ~zl(~) = ea(~)~mf(~) (40b)

These equations determine the correlation lengths at temperature T from measurements

at temperature To. In (40a), ratio j3T(T)/f8T(7’0) can be used instead of .fSo(T)/.f,o(To)

according to (37). Correlation lengths for air bubbles can be obtained in the same manner.
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$.4. Constituent Characteristics

The ordinary ice polymorph Ih with a hexagonal symlnetry (as distinguished from

IC with a cubic symmetry) is predominant in natural ~;eophysical  conditions [Hobbs,  1974;

Glen, 1974; Weeks and Ackley, 1982; Petrenko,  199,?]. The principal hexagonal axis is

the crystallographic c-axis. Each polycrystal  in congelation columnar sea ice consists

of icc platelets perpendicular to the c-axes. During the growth llroccss, ice entraps sea

water in ellipsoidal pockets, referred to as brine inclusions, between the ice platelets. In

columnar ice, c-axes become parallel to within a few degrees of tile horizontal plane [ Weeks

and Ackley, 1982] and brine inclusions are therefore oriented preferentially in the vertical

direct ion.

Sea icc is naturally a multiphasc  mixture consisting of solid ice, liquid brine, and

gaseous inclusions. While the real part of ice permittivity  is nc)t very sensitive to tempera-

ture, the imaginary part is dispersive and varies significantly with temperature. Empirical

formulas to calculate ice permittivity  as a function of temperature at microwave frequen-

cies are available [ Vant et al,, 1982; Tiuri  et al,, 1984; Maizlcr  and Wcgmuller,  198fl. The

magnitudes of complex permittivity of brine ill sea ice are large compared to those of ice,

and both real and imaginary parts decrease several tin-les as frequency increases. Empirical

formulas to compute complex dielectric constants of In-ine were reported by Stogryn and

Dcsargant [1985] in terms of temperature a,nc{ microwave frequency.

Constituent phases in sea ice are interrelated thermodynamically, When the temper-

ature of sea ice varies, the fractional volume of brine inclusions and air bubbles changes

accordingly. On the basis of phase equilibrium, Cox and Weeks [1989] provided equations
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for determining fractional volumes of brine inclusio]ls  and air bubbles

temperature range of –2° C to

sity, salinity, and temperature.

a nc’gligiblc  clircct  contribution

important due to

The salt Na2S 04

n sea ice in the

– 30° C. The required input parameters are bulk ice den-

Whilc  the volume of solid salt is llsually  rninutc and has

to effective permittivities, tile process of salt expulsion is

the consequential redistribution of tile phases of brine and air inclusions.

10H20 crystallizes at –8.2° C; howmwr,  the phase change is much sharper

at –21. l°C,  This is the eutectic temperature of

cipitation of the salt (soclium  chloride dihydride),

NaCll  . 2H20  corresponding to the pre-

In sea water brine, an initial formation

of the salt appears at —22.9° C [ Weeks  and Ackley, 1982]. ‘1’his phase transition causes a

kink in the phase curves and impacts the effective perlnittivities of sea ice as a function of

temperature.

4. DATA COMPARISON AND DISCIJSSION

111 this section, results calculated from the model are compared with experimental

data. Complex perrnittivities  of sea ice grown from saline water at the U.S. Army Cold

Regions and Research Engineering Laboratory (C RRI’lL) were determined [Arcone  et al.,

1986]. The ice slab was composed of columnar ice crystals exhibiting the ice plate/brine

layer substructure that characterizes congelation sea ice in the Arctic [Arcone  et al., 1986].

The pcrmittivities  were obtained from transmission measurements for waves normally in-

cident on the ice slab; therefore, only data for ~e~~ p corresponding to an ordinary wave

were reported; the extraordinary component was not available for the study in this sec-

tion. Uncertainties due to data variations and theoretical assmnptions are also assessed
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with sensitivity analyses.

J. 1. Ice Characterazaiion

The sca icc slab was taken from a saline ice sheet (She.ct 85-3 [Awone et al,, ~ 986])

to a laboratory environment where the temperature was controllable. Measurements were

made at temperature intervals during progressive w;irming  of the ice slab from –32° C

to –2° C at a C-band frequency of 4.8 GHz.  The salinity was 5.4 O/oo  before testing ancl

reduced to 4.2 O/oo  after testing clue to brine loss during the warming process. Only the

final bulk ice density of 0.866 Mg/n13 was reported. FOI a given set of temperature, salinity,

icc dcnsit y, and wave frequency, fractional volumes all d permit t ivi t ics of the constituents

in sea ice are calculated from the empirical formulas as discussed in section 6.4. Typically

in these cases, total fractional volumes of brine inclusions ant{ air bubbles are on the order

of 10Yo.  Real parts of the relative permittivities  of the ice background are about 3.15

and imaginary parts are on the order of 0.001. Eloth the real and imaginary parts of

brine  pcrmittivities  arc about one order of magnitude nigher than the real parts of the ice

background relative permittivities.

For ice structure, dendritic planes normal to c-axes show a marginal tilt of only 2°-4°

and can be modeled approximately as vertical. Photographs of horizontal thin sections

taken from the ice slab before and

et al. [1981. It is observed from

after the t hcrmal m odificat ion were presented by Gow

the photographs that c-axes are randomly orient ed in

azimuthal directions, Initially at – 30° C, minimum, average, and maximum linear sizes are

estimated as 0.05 mm, 0.10 mm, and 0.30 mm, respectively. To calculate the power-law in-

dex for brine inclusions, normalized volumetric sizes corresponding to cubics of the ratios of
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the above linear sizes are used; this gives the index of 0.8945 for the size distribution, The

initial axial ratio ~bm for brine inclusions of smallest size is 1 representing the spheroidal

shape. The maximum axial ratio e~M is roughly estimated tc) be 8 to describe the sub-

stantially ellipsoidal shape of large inclusions. Vertical section il~iagcs  were also available

but not Iargc cmough  to see  substructures of the inhcmlogencitics;  therefore, vertical axial

sizes of these scatterers have to be chosen and sensitivity analyses will be done to study

related uncertainties. The choice for initial minimum and maximum major axial ratios is

Ca,,z  = 2 and eaM = 10 to cover the range of variatio]ls  in brine inclusion sizes. After the

warming process, axial ratios for brine inclusions are taken to be ~b&f = 1.5 and eaM

to account for the change from substantially ellipsoidal shapes into rounded forms.

–3—

The

reshaping index can be estimated from (35) when thin section i]nages are available for

some intermediate stages in the thermal modification process. IIere,  a reshaping inclex of

0.3 is assumed for the validity condition of (35 b).

For air bubbles, the effect on effective permittivities is not as strong as

brine inclusions. Air bubbles are much more rounded than brine inclusions.

that due to

The shape

change in air bubbles is therefore not large and the Imbbles  are considered as spheroids

having circular cross sections as observed in the horizontal thixl sections, Uniform axial

ratios of air bubbles are assumed to be eb = 1 and ea = 2, taken after the values observed by

Perovich and Gow [1991]. Initial linear sizes of air bubbles are taken to be the same as those

of brine inclusions and thus the power-law index is also 0.8945. Whi]e the bubble shape

is considered unchanged thermally, bubble size variations as a function of temperature are

taken into account.
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I

4.2, Daia Comparisons

In this subsection, the experimental obsmvations  are explained with the theoretical

model. The model is first simplified. Then, the complexity is addccl to arrive at the better

dcscriptiox]  of the medium with the full model. ‘1’his st[p-by-step mcthocl  is used to identify

physical mechanisms responsible for the behavior of cf~ectivc  pcmnittivity under changing

thermal conditions,

First, brine loss during the warming process is ignored ancl lJIC shape of brine inclu-

sions is considered as uniform with average axial ratios eb =: 3 ancl e.a  = 5. These ratios

are kept constant with respect to temperature. Hc)wevcr,  size distributions for both brine

inclusions and air bubbles are included. Results fronl the calculation for the imaginary

part of relative effective permittivity  c,fjP/co  (60 = 8.8542 x 10-lZF . m-l is the pcrmit-

tivity of free space) are plotted with the dash curve in Figure 4 together with measured

data obtained from the experirne]lt,  In genera], the theoretical curve shows an increasing

trend as temperature increases. This is caused by the increase c)f brine fractional volume

at higher  tcrnpcrat  ures. The kink observed at --23° C (calculations me made at intervals of

1° C started from –30° C) corresponds to the phase change associated with the formation

of sodium chloride dihydride and the solidification of brine at colder temperatures. The

steep slope of the theoretical curve in the higher temperature rang;c  is a result of the fast

increase in the brine fractional volume. Compared wit 11 experiment al data, the theoretical

dues are too low at low temperatures and toe) high at high temperatures.

The shape distribution of brine inclusions and its variations with temperature are

now considered. Brine inclusions are grouped ixlto 20 subspecies; which are sufficient for
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a gooci  convergence in the results as compared to test talc.ulatiolls with 100 subspecies.

The calculated results arc shown  with the dash-dot curve in Figure 4. Compared with

the old theoretical results, the new curve is higher  at low temperatures and lower at high

temperatures. In the lC)W tcnnpcrature  range, higher values are caused  by the existence of

more substantially cllipsoiclal  brine inclusions which have stronger depolarization effects

and larger cross sections. At higher temperatures, the effect of inclusion rounding are

more prominent in the competition with the incrcasil)g effect of higher  fractional volumes

to renclcr  the results to lower values. Regarding the experimental data, the comparison

is much better except at temperatures highel  than - -8° C the

larger than the measured values, If the brine loss re~mesented

calculated results are still

by the decrease in salinity

from 5.4 O/oo to 4.2 O/oo is incorporated in the model I)y a linear decrease in salinity from

–8° C to –4° C, the theoretical curve shown in Figure 5a explains all the trends observed

in the experimental data for the imaginary part of the relative effkctive  permittivity. The

real part is presented in Figure 5b which indicates that the calculated values are within

10% lower than the measured data.

For the cooling cycle, theoretical results and experimental data are compared in

Figure 6a for the imaginary part c)f the relative effective permittivity. In this case, scatterer

shapes and their variations are not specified by documented experimental data. To account

for this situation, theoretical results are obtained with the upper bound for a completely

reversible process of the shape variations and the lower bound for an irreversible process

where the shapes ret ain their form once they becorn e more rounded after the warming

cycle. Calculated average values are shown with open circles a]ld measured data with

black circles in Figure 6a. The comparison indicates that theoretical and experimental
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results are well overlapped within their range of variations. The real part of the relative

effective pcrmittivity  during the cooling cycle is shown in Figure 61) where black circles

arc experimental data. Effects of shape  variations tire small for the real part and the

cent inuous  curve is t hc average results, which compare very well with the mca.suremcnts.

The analysis in this subsection is basecl as much as possible on available ice charactcr-

izat ion data. The lack of characterization information has neccssit  ated some assumptions.

The uncertainties associated

yses in the next subscc.tion.

4.9.

with the assumptions ca~l bc estimated with sensitivity anal-

Sensitivity Analyse.q

As seen from the model, shape effects on imagil)ary parts of eflective  pcrmittivitics

arc m~port  ant. In Figure 7a, dash-dot curves are colnputed  with

*20Y0 from those used in the last subsection for data comparisons.

axial ratios varied by

The continuous curve

and the clata are the same as in Figure 5a plotted here for reference. The results show

that the effect of ellipsoidal shapes is most important ill the middle range of temperatures.

The insensitivity of shapes at –2° C is due to the rounded form of the inclusions and at

low

the

temperatures due to low fractional volume of brine.  The correspcmding  variations in

real part of the relative effective permit tivit y are 1 mesented  in Figure 7b. The results

show the insensitivity of the real part to the changes in axial ratios. In general, deviations

caused by the above uncertainty in scatterer shapes are within t,lle spread of measured

data.

Another assumption is that the bulk ice

of the previous theoretical calculations. This

density of 0.866 Mg/m3 has been used in all

value should nc)t be constant as the salinity
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changes due to the brine loss. The inaccuracy in density may lead to an uncertainty in

the pha,se  distribution of the constituents in sea ice. The sensitivity analysis is carried out

by varying the density by +5’XO.  This is to keep the variations within the density value

of gas-free sca ice. The results in Figure 8a indicates that tllc imaginary part is more

sensitive to the density at higher temperatures,

in temperature results in a large variation in

In this temperature range, a small change

the fractional volume of brine inclusions

[COZ and Weeks,  1989]. The resulting variations arc, however, within the measurement

fluctuations. With the results in Figure 8b, a comparison to those in Figure 7b suggests

that the volumetric composition in sea ice has a stro]lger  effect on the real part.

For the size distribution, the sensitivity is studied, for example, by varying the maxi-

mum normalized volumetric size by + 10Yo,  The variations affect the power-law index and

thus size distributions of brine inclusions and air bubbles. Calculated results indicate a

weak sensitivity in this case. This provides some justification for the use of the result

in subsection 3.1 to

loss. The sensitivity

approximate the power-law inclcx when the ice slab has some brine

analyses in this subsection indicate that tile assumptions are rather

reasonable or, at least, do not lead to too large deviations,

5. SUMMARY

This paper presents an elcctrothermody  namic model c)f a multiphase anisotropic

medium with multiple species and subspecies characterized by changing phase, orienta-

tion, size, and shape distributions under thermal effects. Effective permittivities of the

medium are derived with the strong permittivity fluctuation approach. The heterogeneous
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medium is effectively anisoh-epic due to a preferential alignment in the orientation distri-

bution of ellipsoidal scatterers. The size distribution of scatterers ill a species is described

in terms of the number density or the fractional volu]ne as a function of normalized volu-

metric sizes. The shape distribution is considered by grouping scattmers  in a species into

many subspecies based on the similarity in scatterer shapes.

The formulation is applied to model congelation s,ea ice consisting of solid ice, liquicl

brine,

of the

and gaseous inclusions. The model accounts for the ther]nocly]lamic  redistribution

constituent phases and the metamorphisln of the heterogeneous ice structure. The-

oretical and experimental results of effective permittivities are compared well for saline ice

at 4.8 GHz undergoing warming and cooling cycles. Observecl  trends in the measured data

arc explained with the physical model. Sensitivities of sea ice characterization parameters

arc analyzed to estimate uncertainties due to inaccuracies in characterization data and

model assumptions. The analyses show that shapes are important to the imaginary parts

of cffec.tivc  permittivitics  and that density variations also affect

The model in this paper includes complex thermodynamic

tura] changes in sea ice subject to thermal effects. H“owever,  the

the real parts.

~u-occsses  including struc-

nmdel  needs to be further

developed to account for a more general case where scatterer orientations have preferen-

tial alignments in both vertical and horizontal directions. In this case, the heterogeneous

medium becomes effectively biaxial

persistent underlying sea current.

such as columnar sea ice with c-axes directed along a
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Figure Captions

Figure 1. Modeling of a multiphasc mixture containil  lg multiple s~)ccies  and subspecies of

scatterers such as sea ice.

Figure 2. Eulcrian rotation angles a, /3, and -y lxtwccn local coordinates (x’, y’, z’) and

global coordinates (z, y, z).

Figure 3. Schematic illustration of Riemann sheets with unshaded surfaces representing

principal sheets. For the cases of (a) scluare  roc)t {zj:  the two sheets are

connected to each  other at tile branch cut along the llcgative real axis, —n <

arg w s n in the principal sheet, and the black ellipse at the center indicates

that zero belongs to bc)th sheets and (b) inverse tangent tan-l w = l/(2i)ln[(l +

iu~)/(1  – iw)]: one sheet is connect to the nezt one at tile branch cut along the

negative real axis, –n < arg[(l  + iz[7)/(1 – iw)] s n in the principal sheet,  and

the open ellipse at the center indicates that zero belongs tc) no sheet. The sheets

are drawn with some spatial separation to create the visual effect. The actual

sheets should collapse onto the complex plane and their limits extend to infinite

values.

Figure 4. Imaginary part of relative effective permittivity:  Black circles are for exper-

imental data, dash curve for calculated results based on orientation and size

distribution and uniform scatterer shape; and dash- dot curves for calculated

results with shape distribution also included.

Figure 5. Relative effective permittivity  in warming cycle: (a) Imaginary part and (b)
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Real part. Black circles are for experimental data and the continuous curve  for

calculated results obtained from the com~]lete  model,

Figure 6. Relative effective pervnittivity  in cooling cycle: (a) Imaginary part and (b) Real

part. Black circles are for experimental data arid open circles for calculated

results. For the real part, the continuous curve is for calculated results.

Figure 7. Effects of shape variations on (a) i]naginary  part and (b) real part of relative

cffectivc pcxmittivity: Black circles arc for experiment al data, the continuous

curve for calculated results, and dash-dot curves for upper and lower bounds

obtained by varying the axial ratios by +2070.

Figure 8. Effects of density variations on (a) imaginary part and (b) real part of relative

cffectivc  permittivity:  Black circles are fol experimental data, the continuous

curve for calculated results, and dash-dot curves for upper and lower bounds

obtained by varying the bulk ice density by +5~o.
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